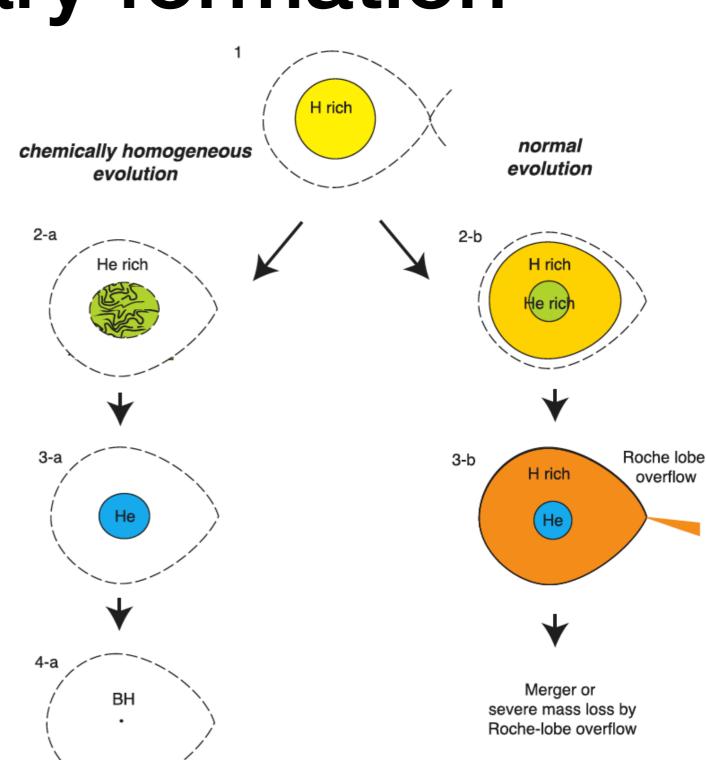

Merging binary black holes through chemically homogeneous evolution in short-period stellar binaries

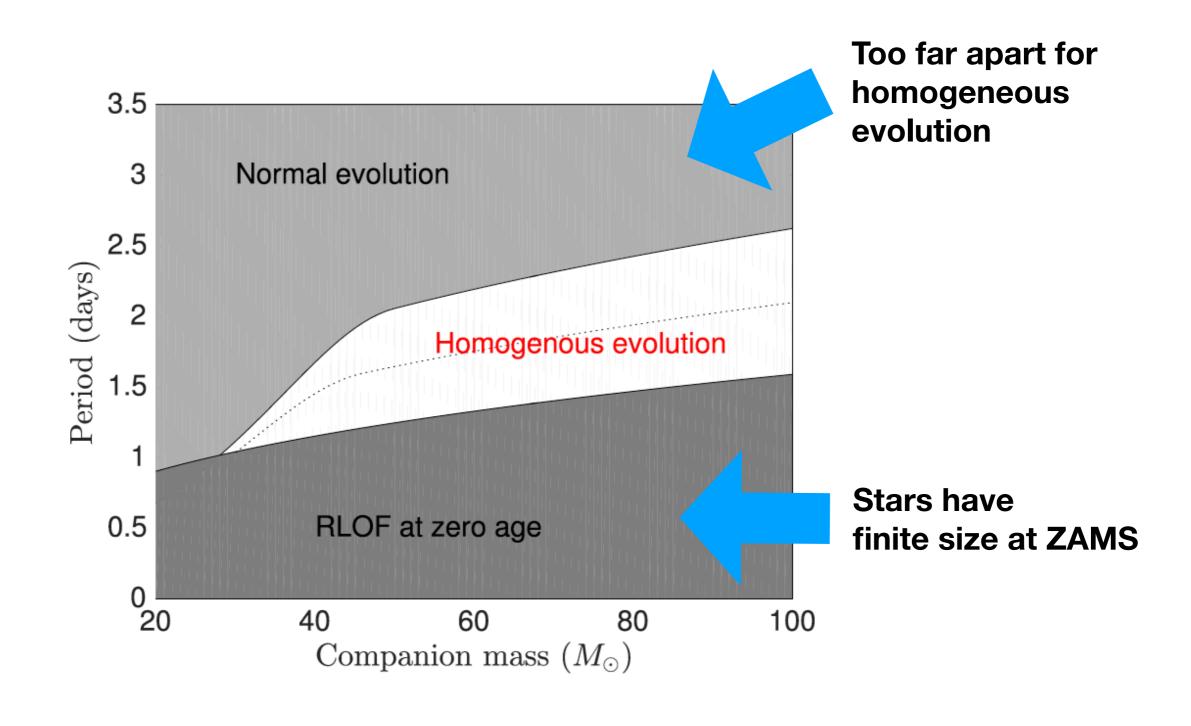
Mandel & de Mink (2016)

Black hole seminar, March 1st, 2021 Dillon Dong

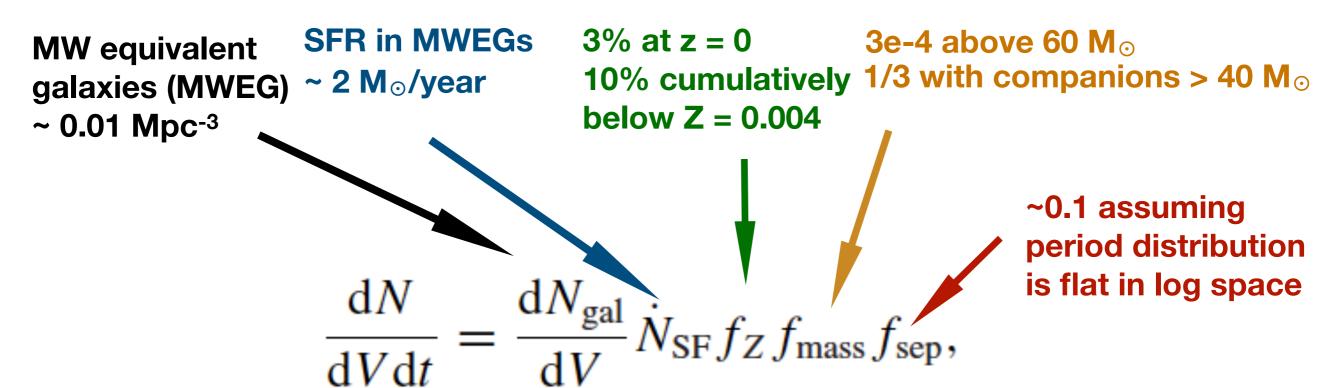
The standard way of making close binaries


Merger or severe mass loss by Roche-lobe overflow

- Hydrogen burns in core, expands during MS expands during post MS
- Eventually stars fill Roche Lobe
- Roche Lobe overflow, common envelope evolution double supernovae
- close compact object binary after heavy mass loss


Stellar rotation can affect close binary formation

Chemically homogeneous evolution (case M; de Mink et al. 2009)


- Very rapid rotation mixes hydrogen from envelope heavy elements from core
- Rather than expanding, star burns hot, luminous and small
- Favored at low metallicity (winds)
 Near contact binaries (tidal locking)
- Possible evidence from overcontact binary VFTS 352 (too hot/compact for dynamically inferred masses)

What periods and masses allow chemically homogeneous evolution?

Order of magnitude, how important is this?

where dN_{gal}/dV is the number density of galaxies; \dot{N}_{SF} is the rate of stars formed per galaxy per unit time; f_Z is the fraction of stars formed at metallicities of interest; f_{mass} is the fraction of stars formed in binaries in the mass range of interest and f_{sep} is the fraction of binaries in the required range of separations.

Altogether:
$$\frac{dN}{dt} \sim \frac{0.01}{\text{Mpc}^3} \times \frac{2}{\text{yr}} \times 0.1 \times 10^{-4} \times 0.1 \sim 20 \text{ Gpc}^{-3} \text{yr}^{-1}.$$

LIGO constraints: 10 - 100

Binary population synthesis inputs

Initial binary distributions

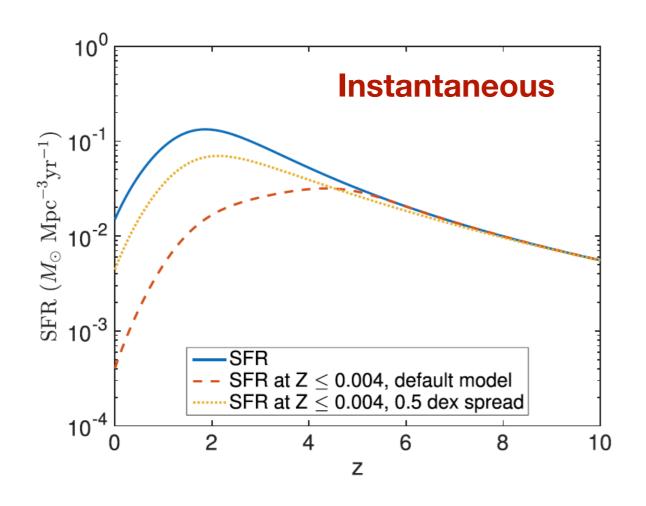
- Kroupa IMF
- flat distribution in mass ratio q
- $dN/d \log_{10} P \propto (\log_{10} P)^{-0.5}$ (Sana+2012)

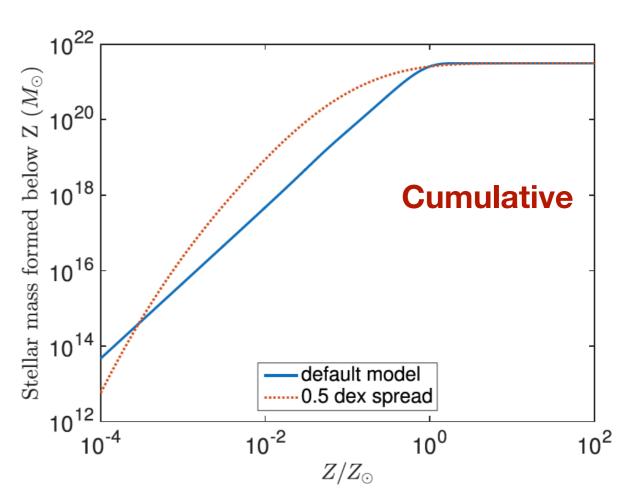
Rotation threshold for chem. hom. evol.

$$\omega_c = \begin{cases} 0.2 + 2.7 \times 10^{-4} \left(\frac{m}{M_{\odot}} - 50 \right)^2 & \text{for } m < 50 \,\mathrm{M}_{\odot}, \\ 0.2 & \text{for } m \ge 50 \,\mathrm{M}_{\odot}. \end{cases}$$

analytic fit to Yoon+2006 simulations for Z = 0.004

Mass loss


- 10% loss during MS (winds)
- 25% loss during WR (winds)
- 10% loss during SN (ejecta)


Binary population synthesis inputs

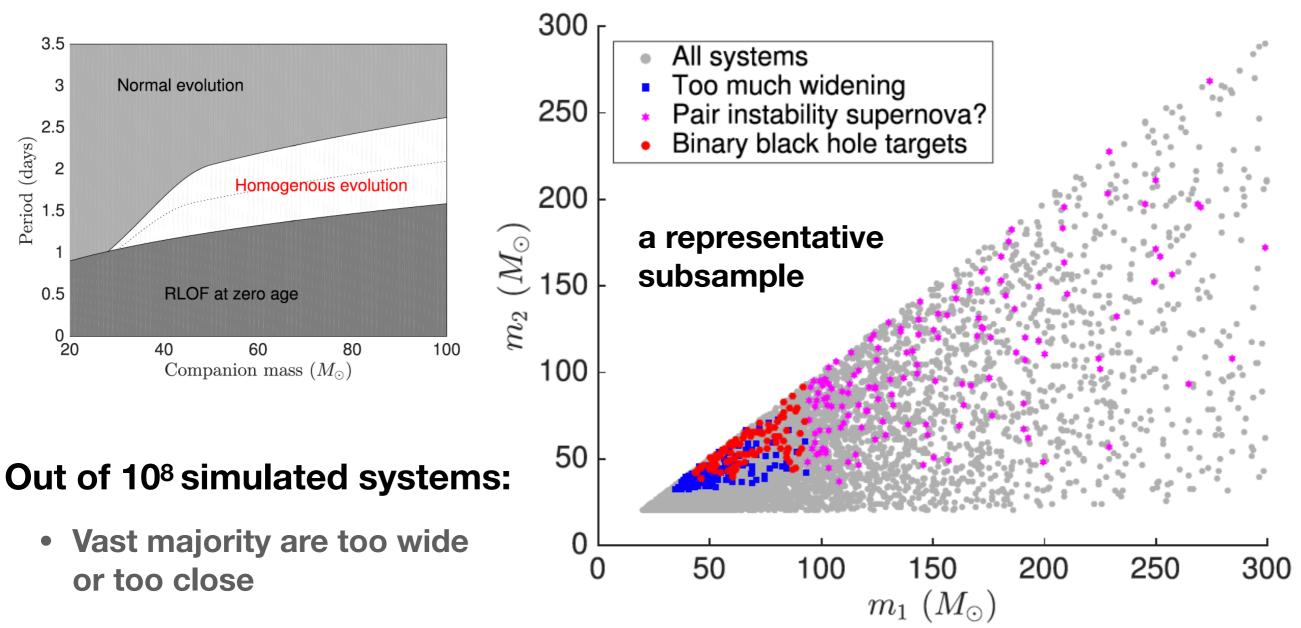
Orbital evolution

- Assume circular orbits
- Orbit widens due to wind and SN mass loss
- Assume winds are spherical, fast compared to orbital motion
- Low kicks

Star formation & metallicity

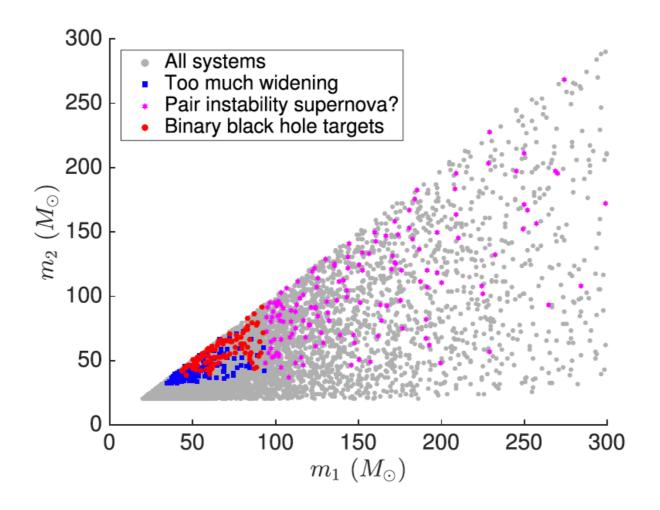
Sample from all these distributions in a Monte Carlo simulation to estimate the BBH merger rate

$$\frac{d^{4}N_{\text{merge}}}{dV_{c} dt dm_{1} dm_{2}}(t_{m}) = \int_{P_{\text{min}}}^{P_{\text{max}}} dP \int_{0}^{1} dZ$$


$$\int_{0}^{t_{m}} dt \ p(t_{m}; m_{1}, m_{2}, P, Z, t_{b}) \ \frac{d^{2}M_{\text{SFR}}}{dt \ dV_{c}}(t_{b})$$

$$\frac{d^{5}N_{\text{binaries}}}{dm_{1} dm_{2} dP dZ dM_{\text{SFR}}}(t_{b}). \tag{8}$$

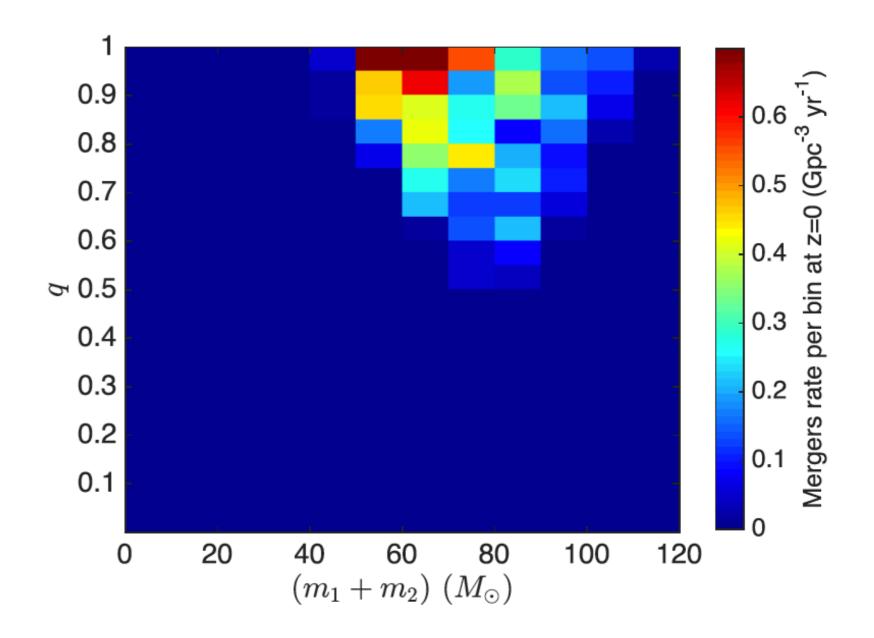
Basically a fancier version of:


$$\frac{\mathrm{d}N}{\mathrm{d}V\mathrm{d}t} = \frac{\mathrm{d}N_{\mathrm{gal}}}{\mathrm{d}V}\dot{N}_{\mathrm{SF}}f_{Z}f_{\mathrm{mass}}f_{\mathrm{sep}},$$

The simulated results

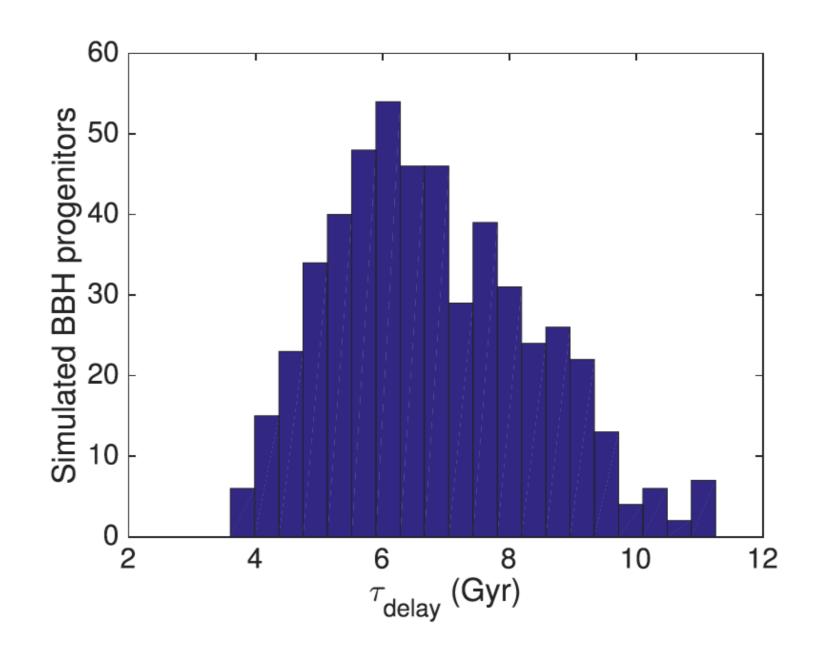
- ~1900 satisfy case M conditions at ZAMS
- ~700 widen out of case M zone from winds
- ~700 have one component massive enough to explode as a pair instability SN
- ~500 form BBH systems (all merge within a Hubble time)

The simulated results

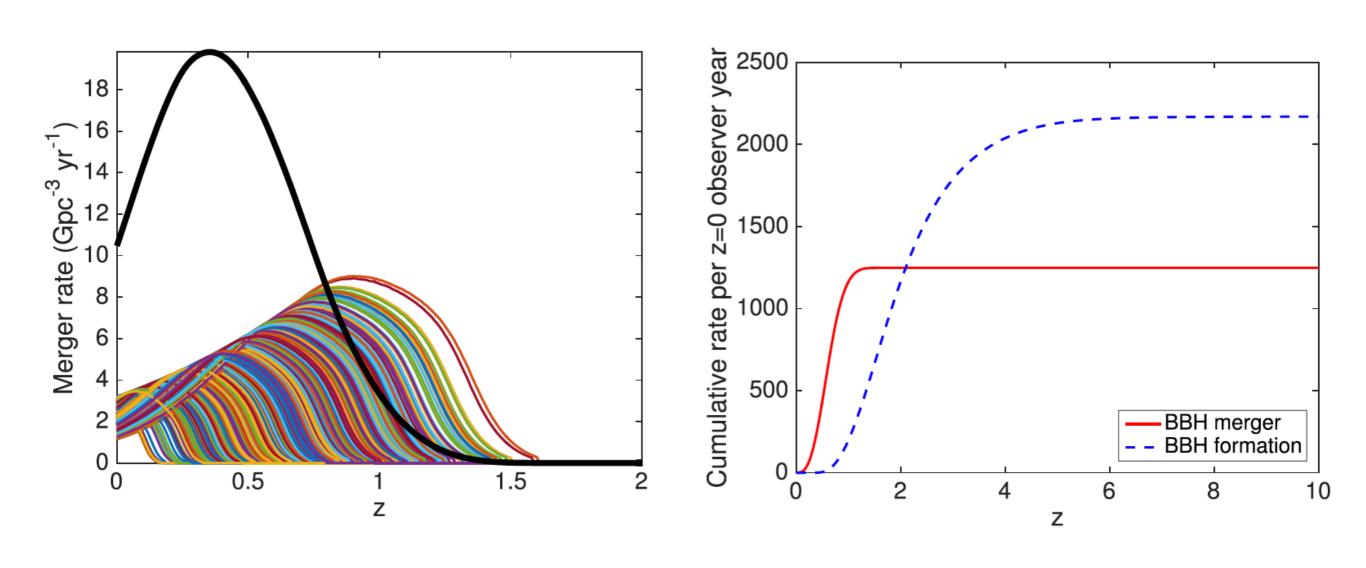

Overall rate:

10.5 +/- 0.5 mergers/year (numerical uncertainties in Monte Carlo)

LIGO constraints: 10 - 100

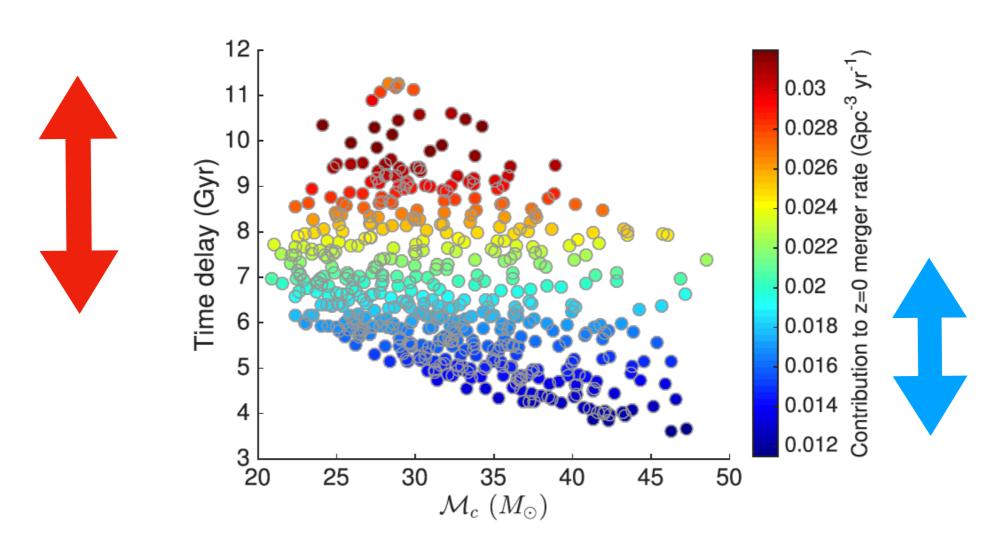

Mass ratios of BBH mergers

- Lower mass systems tend to have a mass ratio close to 1
- Intermediate mass systems go all the way down to q = 0.5
- The highest mass systems also have q ~ 1



Delay times of BBH mergers

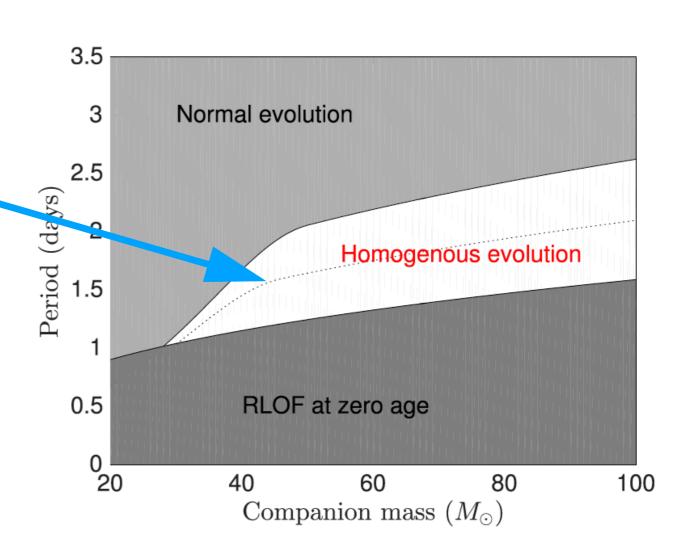
- Minimum delay time= 3.5 Gyr
- No case M mergers before z = 1.6


Most case M mergers happen at low redshift

Instantaneous

Cumulative

Time delays and chirp masses of z = 0 mergers


- Low-ish chirp mass systems are common and span a large range of time delays
- High chirp mass systems are more rare & were mostly formed recently

Uncertainties in mixing

Estimated with more conservative fit to Yoon et al.

$$\omega_c = \begin{cases} 0.25 + 3.2 \times 10^{-4} \left(\frac{m}{M_{\odot}} - 46 \right)^2 & \text{for } m < 46 \,\mathrm{M}_{\odot}, \\ 0.25 & \text{for } m \ge 46 \,\mathrm{M}_{\odot}. \end{cases}$$

Reduces window for case M systems

Uncertainties in mixing

Table 1. Cosmic merger rate in our default model and the impact of various uncertainties.

Simulation	R_{local} (Gpc ⁻³ yr ⁻¹)	$R_{\text{max}} $ (Gpc ⁻³ yr ⁻¹)	$z(R_{\text{max}})$	Description	Comment		
Default	10	20	0.5	Section 4	Standard simulation		
Alternative 1	3	10	0.5	Section 7.1	Reduced Case M window		
Alternative 2.1	2	3.5	0.3	Section 7.1	Reduced Metallicity threshold ($Z \le 0.002$)		
Alternative 2.2	15	30	0.3	Section 7.1	Relaxed metallicity threshold ($Z \le 0.008$)		
Alternative 3.1	7	200	2	Section 7.2	Slow winds (fixed separation)		
Alternative 3.2	7	500	4	Section 7.2	Slow winds (halving separation)		
Alternative 4.1	_	_	_	Section 7.3	Enhanced mass loss (doubled)		
Alternative 4.2	25	50	0.4	Section 7.3	Enhanced mass loss and slow winds		
Alternative 4.3	5	500	3	Section 7.3	Reduced mass loss (by factor of 5)		
Alternative 5	10	20	0.5	Section 7.4	Increased PISN threshold (80 M _O)		
Alternative 6	80	10	0.15	Section 7.5			

- Wind-driven orbital evolution
- Wind velocities in the WR stage (1000 km/s) are comparable to the orbital velocity
- May carry away significant orbital angular momentum from system
- Results in tighter binaries, reducing delay times
- More mergers at high z, marginally fewer at z = 0 (7 vs 10 Gpc⁻³)

Table 1. Cosmic merger rate in our default model and the impact of various uncertainties.

Simulation	R_{local} (Gpc ⁻³ yr ⁻¹)	$R_{\text{max}} $ (Gpc ⁻³ yr ⁻¹)	$z(R_{\text{max}})$	Description	Comment		
Default	10	20	0.5	Section 4	Standard simulation		
Alternative 1	3	10	0.5	Section 7.1	Reduced Case M window		
Alternative 2.1	2	3.5	0.3	Section 7.1	Reduced Metallicity threshold ($Z \le 0.002$)		
Alternative 2.2	15	30	0.3	Section 7.1	Relaxed metallicity threshold ($Z \le 0.008$)		
Alternative 3.1	7	200	2	Section 7.2	Slow winds (fixed separation)		
Alternative 3.2	7	500	4	Section 7.2	Slow winds (halving separation)		
Alternative 4.1	_	_	_	Section 7.3	Enhanced mass loss (doubled)		
Alternative 4.2	25	50	0.4	Section 7.3	Enhanced mass loss and slow winds		
Alternative 4.3	5	500	3	Section 7.3	Reduced mass loss (by factor of 5)		
Alternative 5	10	20	0.5	Section 7.4	Increased PISN threshold ($80 \mathrm{M}_{\odot}$)		
Alternative 6	ative 6 80 10 0.15 Section 7.5		Section 7.5	Enhanced metallicity spread (0.5 dex)			

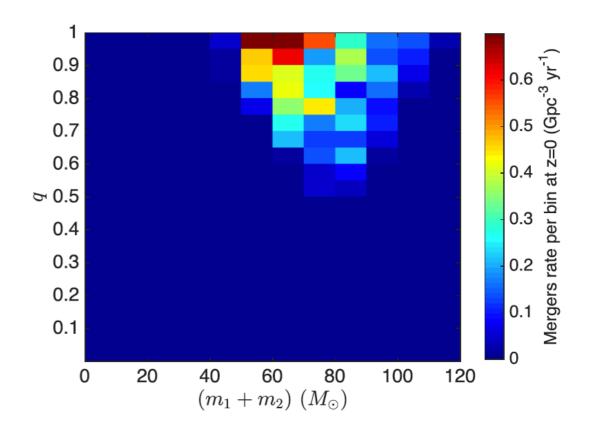
- Stronger or weaker mass loss
 - If mass loss is 2x stronger and winds are fast, all binaries widen too much
 - No BBH mergers
 - If mass loss is 2x stronger and winds are slow, fewer pair instability SNe
 - Higher rates (25 Gpc⁻³ at z = 0)
 - If mass loss is 5x weaker, less binary expansion during evolution
 - Time delays reduced
 - Large peak at z ~ 3 (500 Gpc⁻³)
 - Lower rate today (5 Gpc⁻³)

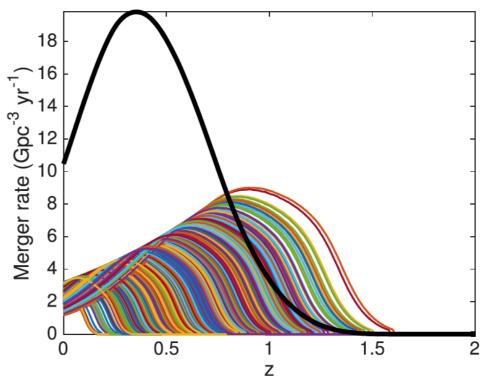
Table 1. Cosmic merger rate in our default model and the impact of various uncertainties.

Simulation	R_{local} (Gpc ⁻³ yr ⁻¹)	$R_{\text{max}} $ (Gpc ⁻³ yr ⁻¹)	$z(R_{\text{max}})$	Description	Comment	
Default	10	20	0.5	Section 4	Standard simulation	
Alternative 1	3	10	0.5	Section 7.1	Reduced Case M window	
Alternative 2.1	2	3.5	0.3	Section 7.1	Reduced Metallicity threshold ($Z \le 0.002$)	
Alternative 2.2	15	30	0.3	Section 7.1	Relaxed metallicity threshold ($Z \le 0.008$)	
Alternative 3.1	7	200	2	Section 7.2	Slow winds (fixed separation)	
Alternative 3.2	7	500	4	Section 7.2	Slow winds (halving separation)	
Alternative 4.1	-	-	-	Section 7.3	Enhanced mass loss (doubled)	
Alternative 4.2	25	50	0.4	Section 7.3	Enhanced mass loss and slow winds	
Alternative 4.3	5	500	3	Section 7.3	Reduced mass loss (by factor of 5)	
Alternative 5	10	20	0.5	Section 7.4	Increased PISN threshold (80 M _O)	
Alternative 6	80	10	0.15	Section 7.5	Enhanced metallicity spread (0.5 dex)	

- Lower mass threshold for pair instability
- Larger spread in metallicities
 - Fairly similar to default scenario

Table 1. Cosmic merger rate in our default model and the impact of various uncertainties.


Simulation	R_{local} (Gpc ⁻³ yr ⁻¹)	$R_{\text{max}} $ (Gpc ⁻³ yr ⁻¹)	$z(R_{\text{max}})$	Description	Comment	
Default	10	20	0.5	Section 4	Standard simulation	
Alternative 1	3	10	0.5	Section 7.1	Reduced Case M window	
Alternative 2.1	2	3.5	0.3	Section 7.1	Reduced Metallicity threshold ($Z \le 0.002$)	
Alternative 2.2	15	30	0.3	Section 7.1	Relaxed metallicity threshold ($Z \le 0.008$)	
Alternative 3.1	7	200	2	Section 7.2	Slow winds (fixed separation)	
Alternative 3.2	7	500	4	Section 7.2	Slow winds (halving separation)	
Alternative 4.1	_	_	_	Section 7.3	Enhanced mass loss (doubled)	
Alternative 4.2	25	50	0.4	Section 7.3	Enhanced mass loss and slow winds	
Alternative 4.3	5	500	3	Section 7.3	Reduced mass loss (by factor of 5)	
Alternative 5	10	20	0.5	Section 7.4	Increased PISN threshold (80 M _O)	
Alternative 6	80	10	0.15	Section 7.5	Enhanced metallicity spread (0.5 dex)	


Differences in initial binary P's and q's

- (de Mink &
- Affects overall rate normalization but not properties

Conclusions of paper I

- Case M evolution can produce a significant fraction of BBH mergers
 ~ 10 Gpc⁻³
- Typical mergers are equal mass ratio total binary mass ~50 - 110 M₀
- SN natal kicks are expected to be low, so BH spins are expected to be aligned
 - Delay times are long, so most mergers are at low redshift
 - Can possibly be tested with a stochastic GW background

Mechanisms producing merging BH binaries

Dynamical evolution within a dense stellar cluster

Isolated binary evolution through mass transfer/ejection of common envelope

Chemical evolution of stars in near-contact binaries with strong internal mixing

Mechanisms producing merging BH binaries

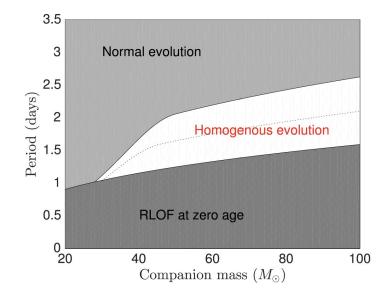
Dynamical evolution within a dense stellar cluster

Isolated binary evolution through mass transfer/ejection of common envelope

- Chemical evolution of stars in near-contact binaries with strong internal mixing
 - Primary formation pathway we will consider

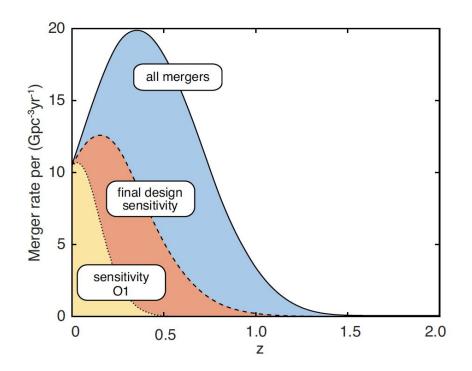
Mixing of nuclear material by instabilities induced by tidal deformation

Can lead to enrichment of stellar envelope with helium

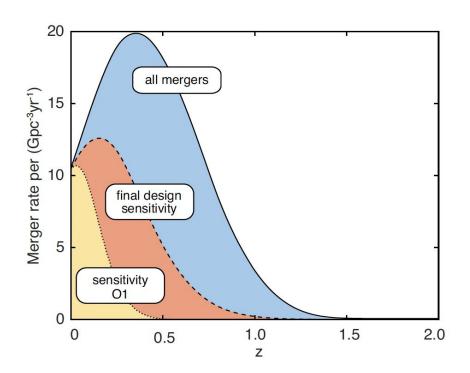

• Prevents the buildup of a chemical gradient within the star

• Stars remain compact through their evolution

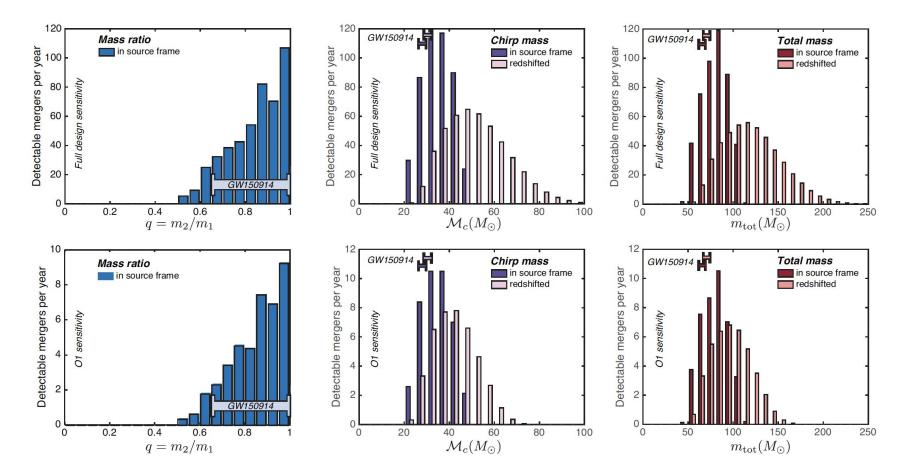
Possible observational examples include VFTS 352 (Almeida et al. 2015) and HD 5980 (Koenigsberger et al. 2014)


Chemically homogeneous evolution simulations

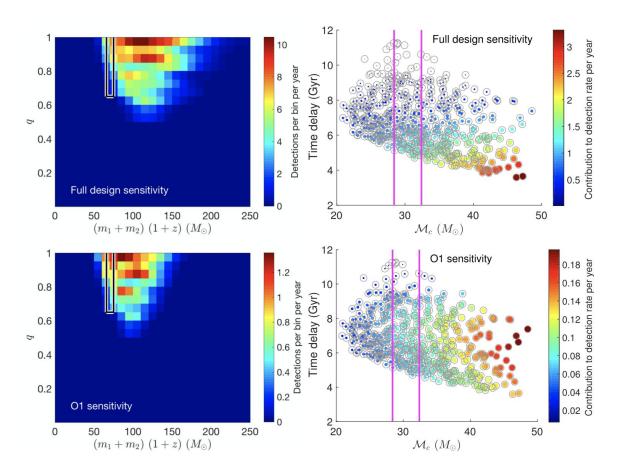
- Merger times within 4-11 Gyr,
- Total mass to exceed 50-100 M_☉
- Mass ratio q > 0.75
- Assumes circular orbits
- Maximum Z = 0.004


Cosmology and Merger rate

- Assumes flat cosmology with Ω_Λ = 0.718 and H₀ = 69.7 km/s/Mpc
 Initial orbital period 10^{0.075} d to 10^{5.5}
- Initial orbital period 10^{0.075} d to 10^{5.5}
- Delay time 4-11 Gyrs, earliest mergers z~1.5
- Maximum at z~0.4
- Varies with mass loss rate, wind speed, metallicity distribution etc.



Detection rate


- For O1, median z~0.2
- GW150914 z~0.1, lower 10th percentile
- Full sensitivity, median z~0.5
- 500 events detectable per year with full sensitivity

Mass ratio, chirp mass, total mass

Mass ratio, chirp mass, total mass

Model variations

ID	Model	$R_{\text{detect}}(\text{full})$ (yr^{-1})	N _{detect} (O1) (per 16 d)	\mathcal{M}_{c} (M_{\bigodot})	$m_{ m tot}$ $({ m M}_{\bigodot})$	q	m_1 (M_{\bigodot})	m_2 (M_{\bigodot})	Description
0	DefaultFull	470	_	35^{+10}_{-10}	82 ⁺²¹ ₋₂₅	>0.66	44+11	36 ⁺¹⁵ ₋₁₀	Standard, full design sensitivity
0	Default01	_	1.8	34^{+11}_{-10}	80^{+24}_{-24}	>0.68	44^{+12}_{-14}	35^{+15}_{-9}	Standard, O1 sensitivity
1	PoorMixing	230	0.6	32^{+10}_{-6}	74^{+24}_{-14}	>0.72	41^{+14}_{-11}	34^{+9}_{-7}	Red. Case M window
2.1	Zmin0.002	91	0.3	35^{+9}_{-9}	84^{+17}_{-22}	>0.65	47^{+9}_{-14}	35^{+12}_{-9}	Red. metallicity threshold (0.002)
2.2	Zmin0.008	540	2.5	35^{+9}_{-10}	80^{+20}_{-24}	>0.68	47^{+8}_{-18}	36^{+14}_{-10}	Inc. metallicity threshold (0.008)
3.1	ConstA	1200	1.4	34^{+10}_{-11}	79^{+22}_{-25}	>0.68	42^{+14}_{-14}	35^{+13}_{-10}	Slow winds (fixed sep.)
3.2	HalvedA	1000	1.2	34^{+10}_{-11}	78^{+23}_{-25}	>0.69	44^{+10}_{-16}	35^{+12}_{-10}	Slow winds (halving sep.)
4.1	Mdot2	0.0	0.0	_	_	_	-	_	Enh. mass-loss (doubled)
4.2	Mdot2ConstA	620	1.5	26^{+14}_{-12}	59^{+32}_{-27}	>0.55	34^{+15}_{-17}	26^{+19}_{-11}	Enh. mass-loss and slow winds
4.3	Mdot0.2	1500	1.6	39^{+11}_{-9}	91^{+23}_{-22}	>0.74	50^{+10}_{-14}	42^{+14}_{-9}	Red. mass-loss (by factor of 5)
5	PISN80	600	2.1	40^{+8}_{-16}	93^{+17}_{-37}	>0.59	51^{+16}_{-19}	37^{+18}_{-11}	Enh. PISN threshold ($80\mathrm{M}_{\odot}$)
6	Dex0.5	1400	10	34^{+10}_{-10}	77^{+24}_{-22}	>0.71	43^{+11}_{-14}	37^{+13}_{-11}	Enh. metallicity spread (0.5 dex)
Combined 0–1500		0–10	14–50	32-114	>0.55	17–67	15–56	Union of 90 per cent ranges	
GW1:	50914		1	28^{+2}_{-2}	65^{+5}_{-4}	>0.65	36^{+5}_{-4}	29^{+4}_{-4}	Abbott et al. (2016f)

Conclusions

- Occurrence of GW150914 consistent with predictions of BH mergers via chemically homogenous evolution
- Should expect several hundred BH mergers consisting of ~equal mass BH ~40 M_o each per year in full sensitivity LIGO.
- ~40 per year in O1